
Project 1.3 Tutorial
EMDA 203

Instructions

1. Download the Project_1_3_Tutorial.zip archive from the Moodle site’s Project_1_3

assignment section, and unzip the archive.

2. Open your Users folder (your P drive) and find your EMDA_203_Starterkit folder. Once

there, open up the builds folder, and delete the old Project_1_3 folder.

3. Copy the entire unzipped Project_1_3_Tutorial folder you just unzipped into your

builds folder.

4. To avoid confusion, delete the zip archive and the unzipped copy of the new folder from your

Downloads folder (or wherever you downloaded them).

5. Now, open up Project_1_3_Tutorial_Code_2020.html in Chrome and your text

editor (Visual Studio Code, NotePad++, etc.). As you work through the project, answer the

questions below.

Using the Console Call
Uncomment the "console.log" call at about line 48 and then reload the page in chrome.

• What does this put in the console?
• Why would this be a useful place to put a console.log command in your code?
• What is the overall importance of "console.log" calls in programming in general?

The Importance of Registration
Uncomment the hero.regX = 64; and hero.regY = 64; lines of code (around line 62).

• What do these lines of code mean?
• Why is the registration property important?

Generating Targets – Overview
Using single lines of code to generate a few targets is fine, but what if we want to generate 100
targets, or 1000 targets? Programming line by line for a large number of targets quickly becomes
impractical, so we team up for loops and array objects. The for loop lets us repeat a process a set
number of times, and an array object lets us store and reference the results of this process.

Generating Targets I
Let’s start generating some targets… lots of targets. At about line 55, uncomment the function call,
makeTargets(numberOfTargets); and reload the page.

• What is the argument passed in this function call?
• Knowing this, how can we change the number of targets the function generates?
• How do we change the scale of the targets?
• Why is it a good idea to use variables to control these properties?

Generating Targets II—Parameters and for loops
Go to the definition, function makeTargets(howManyTargets){ … } around line 104.
What is the parameter in this function definition?

On line 106, we use our first for loop. A for loop lets us repeat a process a set number of times. Often,
we will use a for loop to iterate/step through an array, but more on that later…

The general syntax of a for loop is:

for(however many times we want something done…){ …execute this block statement }

On line 106, our for loop reads:

for(var i = 0; i < howManyTargets; i++) { … }

• What does our parameter, howManyTargets do here?

Generating Targets III – Getting random
Line 107 has been good clean fun, but you’ll have noticed, our targets are all the same. To get some
more variety, we’ll add some randomness to our lives by using conditionals and the JavaScript Math
library. The Math library has two important methods in it: Math.random() and Math.floor().
Math.random() generates a random number between 0 and .99999999999999999, while Math.floor()
cuts any decimals off of a number, converting it to an integer. Comment out our old friend, line 107
and un-comment lines 108 – 115. Save and re-run. Yay.

• What does the variable whichTarget do? How many different target types are possible here?

• What is the variable stageMargin used for?

• Where is the scale of each target set?

• What is the rollRange() function doing for us here? Where is it defined?

• What is line 132 doing for us? How is the targetsArray used in this line?

• Can you figure out how to change the speed of the targets?

Seeing arrays in action via the console
Un-comment line 133 and reload the page. Look at the console. This shows how the array is populated
as we iterate through the for loop.

Comment-out line 133 again, and un-comment line 134. Reload the page and look at the console. This
shows us how the array is populated each time through the loop.

Let’s move these targets!
In Project 1_2, we wrote a move function that had to be called separately for each target we wanted
to move: moveTarget(target01); moveTarget(target02); etc… We’ve replaced that
tedious business with a new function, moveTargets()defined around line 141. This new and

improved function uses a for loop to walk through the targetsArray and adjust each target’s .x
and .y property based on that particular target’s .speedX and .speedY properties.

• Where is the moveTargets() function call? Un-comment it, and watch the targets move.
• On line 142, what is the targetsArray.length property doing for us?

Understanding the Boundary Checks
Go to the function targetBoundaryCheck() definition around line 148. Hey, there’s our
trusty for loop again, iterating through the ol’ targetsArray. Good times. Notice that
targetBoundaryCheck() contains two conditionals that check if a particular target in the array
is moving off stage. If it is, it reverses the target’s .speedX or .speedY property to make it “bounce”
off of the stage boundary. Now, go check out the heroBoundaryCheck() function around line
162. . .

• How is heroBoundaryCheck() different from targetBoundaryCheck()?
• Where should the function calls to these functions be coded? Go there now and un-comment

the function calls to see ‘em in action!

One last piece of randomness…
Now that everything is bouncing and moving around, let’s go back to our makeTargets() function
definition. Comment-out the four lines beginning with var coinTossX around line 127. Save and
run the code to see what effect this has on the targets.

• What are the potential values contained in coinTossX and coinTossY?
• How are they used in the two conditional statements?

